生鲜配送企业如果是拥有了一个生鲜配送系统的话也有一个对应的生鲜配送app的话那么该如何运用这样一个app去进行营销的呢,其实方法的话也是很简单的,但是也是需要一些技巧的,但本站
2021年中国数据库行业研究报告本站
据艾瑞统计,2020年中国数据库市场总规模达247.1亿元,同比增长16.2%。未来三年预计将保持高增长,多方面积极因素促成:1)政策扶持、国产化和数字化转型带动需求增长;3)各种类型厂商厚积薄发,产品和技术走向成熟;4)企业对基础软件的付费意愿逐年提升。
中国数据库市场格局:1)多类型数据库百花齐放,关系型占据绝对主流,2020年中国关系型数据库的市场份额达90%左右;2)借助政策东风,国产厂商市场版图快速扩张,2020年达梦等传统国产厂商的市场份额上升至7.1%,国外厂商下降至52.6%;3)2020年中国公有云部署模式的数据库市场份额占比达32.7%,近年来增速有所放缓,预计2025年将达到47.2%,云厂商将成为中国数据库市场市占率最大的阵营;4)初创厂商不断涌现,预计未来五年有10倍以上的成长空间。
中国数据库市场挑战与趋势:约2010年起,中国数据库市场进入了充分释放活力的十年,但在分布式改造、国产化、数据迁移、跨库管理、软硬结合等多方面仍面临挑战。据艾瑞研究,“多场景、融合、云、湖仓一体、开源、人工智能”将成为中国数据库市场未来发展的必然趋势。
从20世纪80年代起,我国数据库市场开始逐步发展起来。经历了初始的技术萌芽期和国外厂商垄断期,21世纪初,基于863计划、核高基计划等国家政策支持,一批拥有高校背景的国产厂商成立,打破了Oracle和IBM一统天下的格局。2010s,随着市场需求的增长、技术的沉淀,一批云厂商和新兴独立厂商开始提供数据库产品。近年来,借助国产化热潮,许多软件厂商、集成商、运营商等也开始入局,发展自己的数据库能力。
据艾瑞统计,2020年中国数据库市场总规模达247.1亿,较2019年增长16.2%,CAGR(2020-2025e)达15.6%。2020-2022中国数据库市场将呈高速增长,由多方面因素促成:1)政策利好,国家大力鼓励国产数据库厂商的发展;2)需求拉动,国产化和数字化建设带动需求的爆发增长;3)供给端多元厂商发力,传统、初创和跨界厂商厚积薄发,产品和技术经历了工程实践的打磨走向成熟;4)国内企业对基础软件的付费意愿和IT支出逐年提升,有利于市场的长期发展。
随着互联网的发展,多种类型数据爆发式地增长,各种创新业务场景层出不穷,进而促进了供给端厂商技术和产品架构的创新。从2010s左右,多种类型和技术路线的数据库厂商纷纷成立,中国数据库市场进入了百花齐放的阶段。但从商业价值来看,中国数据库市场的营收仍主要来自关系型数据库,NoSQL数据库更多地是开源模式,产生二开和服务的费用。
借助政策红利,国产厂商经过多年的技术研发和经验积累,市场份额在逐年提升。在国产阵营中,一批以“达梦、金仓、南大通用、神舟通用”为代表的,2000年左右成立的传统国产数据库厂商近年来开始发力,他们从购买源码、借助开源走向自主研发,实力不断增强,在党政军市场有着较好的表现,同时也开始向能源电力、运营商、交通等其他行业快速拓展。此外,初创厂商、云厂商、ICT厂商等近年来也开始发力数据库市场,国产阵营日益强大。相比之下,国外数据库厂商如Oracle、Microsoft、IBM等,虽然在OLTP的核心场景还拥有较高的市占率,但整体市场份额在被逐渐侵蚀。
中国公有云部署模式的数据库在过去三年快速增长,于2020年达到了32.7%的市场份额,未来虽然增速会有所放缓,但仍有一定的渗透空间。从应用逻辑来看,数据库服务于数据,数据应用于业务最终产生价值;反之,业务端的创新和数据的变化也会反馈与数据库市场。从最终业务端来看,现阶段云数据库更多的还是应用于互联网行业,以及传统行业的互联网场景,未来随着产业端更多的业务创新,有望进一步拉动云数据库的需求。
一批2015年前后成立的初创型厂商借助NewSQL、SQL on Hadoop、NoSQL等新技术架构,以开源或垂直领域商业化的思路,逐步增强自己的市场影响力,在互联网、金融、物联网等行业有着较好的表现。从现阶段来看,其营收的市占份额较小,但增速较快,是中国数据库市场增速最快的一个赛道,预计到2025年可以实现高于十倍的扩张。随着市场的大浪淘沙,未来的初创数据库厂商赛道会趋于收敛,市场份额向一小批具有核心技术优势、抓住高价值应用场景的优秀厂商集中。
参考企的业采购流程,一般数据库选型从前期到后期,会综合考虑外围因素(自身技术路线、资质、品牌声誉与行业案例、生态构建等),产品技术相关因素(一致性、兼容性、扩展性、性能、功能丰富性、安全性等),以及后期的价格服务因素(解决方案、性价比、服务响应速度、培训体系等)。
对于以银行为例的金融企业而言,其业务数据的价值较高,因而对数据库“高可用、强一致、低时延”的要求较为极致。在TP场景下,银行下一步选型的重点为分布式改造。初步来看,解决思路主要是“中间件+分库分表”or“原生分布式架构”。中间件路线方案成熟且性能表现较好,是现阶段大多数客户的选择;但原生分布式架构在扩展性方面存在天然的优势,在未来具有更广阔的发展空间。
受利互联网和疫情,教育行业近年来呈“营收高增长,业务快迭代”发展特点。因此,企业在进行选型时较看重数据库的可扩展性,希望产品可以及时响应公司版图的扩张和业务的变更。同时,教育行业属于非强技术导向型,企业对数据库强一致、高性能和高可靠的要求并不极致,更多会考虑产品的成本控制和成熟度。企业在选型时表现较保守,虽然看好一些新产品(e.g. HTAP数据库、云原生数据库),但更希望数据库产品工程实践丰富,可以拿来即用,且专业人才招聘容易。因此MySQL数据库成为许多(互联网)教育企业的最佳选择,同时考虑成本和便捷性,云托管形式在业界也比较流行。
横向扩展 (scale out) 的设计思想并非创新,但在历史上一直未被广泛应用。一方面是由于分布式环境使事务ACID特性难以实现,另一方面是由于单机性能升级即可满足企业的数据需求。但随着摩尔定律在某种程度上的失效和互联网的发展,硬件性能升级无法匹配海量数据的增长,分布式在近年来广受关注,许多厂商都推出了相应的分布式数据库产品。然而,在分布式的前提下,还有许多待探索的问题,例如分布式事务的解决、架构的创新、数据分片的智能化、企业级能力的提升等。
信创即信息技术应用创新,是在复杂国际背景下,国家政策引导的新一轮信息产业创新。“信创”无论是对产业端还是需求端企业都是一个重要的契机。国产数据库厂商借助政策东风,有利于其拓展市场,将产品放到实际场景中打磨,不断更新迭代,实现自己技术实力正真的弯道超车;传统行业企业、政府等也可以借此契机,实现数字化转型和业务的创新发展。但信创并非一日之功,从产业发展规律来看,新一轮的技术变革往往需要长达6年左右的实践和积累,需要上下游厂商和企业共同的长期努力。
面对业务形态多样、商业模式多变、需求变化频繁的当代市场,数据库和应用系统存在的形式也愈发的丰富。一个企业往往拥有多个系统,从本地到云端,从关系型到非关系型,从OLTP到OLAP,从国外品牌到国产品牌,数据库之间的跨库查询、数据导出迁移、结构变更等操作已成为常态。数据迁移频繁、多库并存的现状,使得企业后期的使用成本(运维成本、人力成本、多技术栈学习成本、迁移成本、二开成本等)大幅提高,也为数据库厂商提出了“统一管理”的新挑战。
数据库系统遵循“木桶理论”,硬件和软件作为系统的核心组件,互相制约,互相促进。而新型硬件的发展为数据库软件的发展带来了新的挑战。例如多核CPU技术走向成熟,但实际应用中并发控制出现冲突,使得核数增加带来的性能增益出现限制,如何进行多核CPU调度优化为厂商提出了新的难题。同时,大容量内存和高速硬盘走向普及,NVM非易失内存也逐渐成熟,内存的潜力释放,如何搭配新存储介质设计新的数据库架构也有待探索。因此,一些数据库领先企业如Oracle、阿里等都开始探索数据库软硬一体机的设计与实践。
从产品视角来看,不同场景具有不同的特性,对数据库读写性能、吞吐量、一致性等方面的要求各有不同。为支持不同场景下的不同要求,数据库多样化是必然的选择。例如,物联网场景下写入的数据量特别大,对实时性的要求特别高,但数据天然是时间有序的且具有静态特征,因此时序数据库会较传统的事务型数据库更有优势。
从用户视角来看,除部分头部互联网公司外,其他大中小型企业的IT人员比例都并不高,对口数据库团队的人数会更少。对于他们而言,各种日新月异的技术栈、多种类型的数据库产生了极大的学习成本和维护成本,因此希望能够有一体化的产品/平台直接使用或者统一管理。对于该种类型的企业而言,会更倾向采购能满足其70%全部需求的一体化产品,而非能100%满足其部分需求的多个产品。当今市场上的HTAP/NewSQL数据库、多模数据库、统一管理平台等即满足了企业简单化一体化的需求,因此在多场景大背景下的“融合”也是不容忽视的趋势。
随着企业业务规模的扩张,数字化转型的推进,其对数据库系统也提出了新的要求:传统建设模式项目周期长,不能匹配业务上新的速度;企业部署多套数据库系统,系统间割裂,缺少统一的管理平台;资源采购和体系规划按现有规模建设,难以随业务的变化而弹性伸缩等。DBaaS(Database as a Service) 即将IT基础资源以服务化的方式提供给数据库,以及多租户和动态调整来解决成本和响应问题。部分对数据自主性和安全性要求较高的大型企业,可以选择以私有云或者专有云的方式进行数据库的云化改造。
1980s以来,数据仓库技术不断发展,尤其MPP架构使得DBMS能够处理大量数据,满足企业通过数据分析来支持商业决策的需求。但随着互联网的发展,许多企业需要同时处理非结构化数据,半结构化数据以及海量结构化数据。数据湖随之诞生,它可以直接存储各种格式的原始数据,根据用户需求进行计算,具有灵活弹性的优点。但是,数据湖虽然适用于存储多元化数据,却缺少一些企业级功能,在实际执行时也存在许多挑战:数据缺少加工,难以实现实时分析,数据查询性能差;不支持ACID事务等。
面对企业海量大数据场景下的联机交易、非结构化数据治理的需求,以及数据仓库/数据湖架构的局限,以Snowflake、Databricks、阿里云、巨杉数据库为代表的新一代“湖仓一体”数据库厂商快速崛起。湖仓一体架构下打通了数仓和数据湖,并融合了两种架构的优势,底层多套存储系统并存且互相数据共享,形成了资源池,上层各引擎可以通过一体的封装接口访问,实现了联机交易和联机分析的同时支持。
从产业发展角度来,开源模式一方面提高了数据库产品开发的“效率”,它将源代码开放,避免了研发人员对基础程序的重复开发;另一方面它也有助于产品的技术“创新”,开源社区最大程度上汇聚了全球的资源力量,为开发者提供了交流切磋的空间,从而加速创新灵感的诞生。对于厂商而言,尽管从表面上看,企业部署开源并不能获得直接的利益,但在这个过程中,它们却可以布局产品的生态建设(包括人才培养、市场教育、实践反馈、企业文化、产品影响力、配套周边产品等),从而为自己获得有利的战略地位。在当今移动互联网向产业互联网发展的转折点,开源模式未尝不是各云厂商、传统厂商、新兴厂商扩展市场的破局之刃。
随着移动互联网到产业互联网的发展,数据每日呈指数级的增长,且呈现多模态特性。面对复杂海量的数据,越来越多种类的数据库出现,需要调试的范围越来越广。但大多优化任务仍落在DBA身上,需要其进行手动调优,致使人工能力逐渐跟不上数据库的发展。而人工智能可以弥补人能力的不足,解决许多存在多年的数据库问题,例如资源的调度、索引的设计和优化、查询的优化、负载均衡设计、缓存失效等。AI 通过优化算法,对任务进行有效地预测、分析和自动化,从而减少了人工成本并大大提高数据库的性能。尤其是未来随着云上数据库更大范围内的普及,智能资源调度将成为各供应商需要面对的下一个课题。
在2009年,虽然全球经济都处于金融危机的恐慌当中,但中国零售行业市场却呈现逆势增长的发展趋势,政府一系列零售行业促进计划收到成效,家电下乡,农超对接等政策刺激了零售业的发展,门店扩张和互联网零售渠道的开拓成为2009年零售行业发展的主基调。伴随着零售行业的发展,2009年零售行业信息化投入也超过80亿,继续保持了增长势头。
本站 对于B2B和B2C电商平台来说,客户都是在平台上的商家,主要通过广告或搜索排名提供服务
免责声明:本站所有信息均搜集自互联网,并不代表本站观点,本站不对其真实合法性负责。如有信息侵犯了您的权益,请告知,本站将立刻处理。联系QQ:1640731186